On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue

نویسندگان

چکیده

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) the Harary (also called matrix) while diag(RH(G)) represents diagonal of total vertices. In present work, some upper and lower bounds second-largest eigenvalue graphs in terms various parameters are investigated. Besides, all attaining these new characterized. Additionally, it inferred that among with n vertices, complete Kn Kn−e obtained from by deleting an edge e have maximum eigenvalue.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with small second largest Laplacian eigenvalue

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

متن کامل

Ela Nested Graphs with Bounded Second Largest ( Signless Laplacian

Nested split and double nested graphs (commonly named nested graphs) are considered. General statements regarding the signless Laplacian spectra are proven, and the nested graphs whose second largest signless Laplacian eigenvalue is bounded by a fixed integral constant are studied. Some sufficient conditions are provided and a procedure for classifying such graphs in particular cases is provide...

متن کامل

On the Average Eccentricity, the Harmonic Index and the Largest Signless Laplacian Eigenvalue of a Graph

The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc (G) of a graph G is the mean value of eccentricities of all vertices of G. The harmonic index H (G) of a graph G is defined as the sum of 2 di+dj over all edges vivj of G, where di denotes the degree of a vertex vi in G. In this paper, we determine the unique tree with minimum average...

متن کامل

The smallest eigenvalue of the signless Laplacian

Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.

متن کامل

Eigenvalue Bounds for the Signless Laplacian

We extend our previous survey of properties of spectra of signless Laplacians of graphs. Some new bounds for eigenvalues are given, and the main result concerns the graphs whose largest eigenvalue is maximal among the graphs with fixed numbers of vertices and edges. The results are presented in the context of a number of computer-generated conjectures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9050512